EuroHEMS Oct. 18, 2018 Cologne, Germany

Josh Wiley¹
Anton Belousov¹
Sarah Waller¹
Dragan Nikolic¹
Richard Kidd¹
Stojan Madzunkov¹
Morgan Cable¹
Murray Darrach¹

A Quadrupole Ion Trap for the Detection of Biomarkers at Icy Worlds

¹Jet Propulsion Laboratory, California Institute of Technology

Icy Worlds

- Ingredients for life (as we know it):
 - -__ Water
 - Organic carbon
 - Energy source
 - Other elements: N, S, P
- 5 icy moons in our solar system that could potentially host life
- Need continued instrument development for lander and orbiter missions to search for signs of life

<u>Jupiter</u>

Saturn

Titan Enceladus

Images: NASA

Enceladus

- Discovered by William Herschel in 1789 (named by son John in 1847)
- 500 km diameter
- One of the most likely icy worlds to host life
- Cryovolcanoes on the south pole eject ice, water vapor, H₂, NaCl, etc.
 - ~200 kg of material per second
 - ~500 km from the surface
- Widely accepted to have a large, salty, and subsurface ocean
- Over 100 geysers identified
- lce particles make up Saturn's E-Ring

Cassini: Enceladus' Ice Grain Analysis

Postberg, F.; et al. Nature, 558, p. 564, 2018

Two mass analyzers were aboard Cassini

- Cosmic dust analyzer (CDA)
- Ion and Neutral Mass Spectrometer (INMS)

CDA:

- Time-of-Flight mass spectra of cations generated by high velocity (4-18 km/s) impacts of ice/dust grains on Rhodium target
- Mass range 1 200 Da (up to 8,000 Da)
- Mass resolution (m/ Δ m): 20-50

INMS:

- Detects ions and neutrals with quadrupole mass filter
- Mass range: 1 99 Da

Together, the CDA and INMS detected, water, salts (NaCl), benzene, methane, carbon dioxide and complex organics

4

QIT-MS Development at JPL

QIT-MS on 4 New Frontiers Concepts

Sampling Hypervelocity Ice with QIT-MS

Ice Grain Sampling at Enceladus

- QIT-MS aboard spacecraft travelling several km/s
- Ice grains from Enceladus' ocean are sampled by QIT-MS

Ice Grain Sampling in the Lab

- Liquid beam formed in vacuum
- Laser impinges on liquid beam and causes shock wave-induced anisotropic dispersion of small droplets
- Small droplets travel at a few km/s into QIT-MS

Internal Ionization of Neutral Species Produced by Ice Grain Volatilization

Step 1 | Ionizing e beam in the QITMS

Step 2 | e-

Ice grain at 5-7 km/sec enters QITMS and strikes surface causing volitization

e- beam or chemical ionization of the neutral gas molecules from the volatilized ice grain form ions

lons are mass analyzed by multistage mass spectrometry

Modifications to QIT-MS for Low Vapor Pressure Molecule Analysis

Photo of Modified QIT-MS

1 cm² slot for ice grains

Solution Injection in QIT-MS Diagram

EI – Low Pressure of R ($<10^{-5}$ torr):

 $CI - High Pressure of R (>10^{-5} torr)$:

- •Slot cut into QIT end cap to accept ice grains
- •Trap coated with silicon-based SilcoTek coating to prevent analyte "sticking"
- •Fatty/Amino solutions pumped directly into QIT-MS slot (QIT temperature: 125 °C)
- Adding a "reagent" allows chemical ionization (CI)
- Absence of a "reagent" results in electron ionization (EI)

Various Ionization Modes

Electron Impact

- Solvent and analyte pumped into QIT
- After some time, solvent is pumped away but analyte remains
- Electron beam ionizes analyte

Solvent (S) + Analyte (A)

Solution:

 $^{\mathsf{A}}\mathsf{AH}^{\mathsf{+}}+\mathsf{R}$

Chemical Ionization

Method 1:

- Solvent and analyte continuously pumped into QIT
- Solvent is used as reagent for CI

Reagent (R) + Analyte (A)

Method 2:

- Solvent and analyte pumped into QIT
- After some time, solvent is pumped away but analyte remains
- Reagent gas for CI added in separate port

Solution: Solvent (S) + Analyte (A)

 $RH^+ + A$

El vs. Cl

- Causes significant fragmentation ("hard")
 - Complicates mass spectra of mixtures
 - Excellent fingerprint for pure samples
- Parent peak: Molecular cation

- Can be "soft" or "hard" depending on reagents/samples
- CI of lauric acid with water is "hard"
 - Similar to El spectrum
- Parent peak: Protonated

"Softening" Chemical Ionization

<u>Difference in proton affinity</u> determines extent of fragmentation

Water > Acetonitrile > Acetone

Molecule	PA (kJ/mol)	ΔPA (kJ/mol)
Lauric acid	815-825?	
Water	691	124 (1.3 eV)*
Acetonitrile	779.2	36 (0.4 eV)*
Acetone	812	3 (0.03 eV)*

* Estimated values

- Mass spectra show less fragmentation as you work down from water to acetone
- Water CI shows more of the protonated parent ion than acetone
 - Likely due to reagent size
 - Should be able to further decrease fragmentation by using a reagent with a similar proton affinity as acetone but lower mass

Pressure Dependence of CI

- CI is very sensitive to pressure
- Optimum CI with 1x10⁻⁵ torr acetone in QIT
- Sharp decrease in counts likely due to ion loss from collisions with acetone
 - •A lighter CI reagent could possibly reduce signal loss

Amino Acid CI in Water Mixtures

CI: Water

- Adding acetone to a majority water background gas "softens" ionization
- A water:acetone ratio of 99:1 provides best results
 - +/- one order of magnitude also OK
- Could select separate CI reagent for softer ionization of amino acids

CI: Water/Acetone (99/1)

Molecule	Proton Affinity (PA, kJ/mol)	ΔPA w/Glycine (kJ/mol)
Water	691	195.5 (2.0 eV)
Acetone	812	74.5 (0.77 eV)

Analysis of Mixtures

Mass (amu)
75
88
105
149
165

- EI mass spectrum quickly becomes congested with fragment peaks (esp. m/z 30 – 100)
- Can differentiate all 5 parent ions
 Some fragmentation
- Can perform MS/MS for further structural confirmation

MS/MS with Water Collision Gas

CID agent: Water (with 1% Acetone)

- Minimal losses during isolation
- ~50-70% fragmentation efficiency
- Fragments at 133 and 104 amu

133: Ammonia loss 104: Formic acid loss

- Works well for all of the amino acids so far
 - Having some issues with fatty acids (lose water before activation)

Design for Hypervelocity Ice Sampling

- Space venting to save space and power consumption
- Introducing water vapor with the acetone CI reagent vapor should help mitigate the effects of pressure fluctuations
- Potentially send two CI reagents
 - One for fatty & amino acids
 - One for amino acids

Molecule	PA (kJ/mol)
Lauric acid	815-825?
Glycine	886.5
Acetone	812
Ammonia	853.6
Chloromethylene	874.1

Next Steps

• MS/MS to identify potential confounding isomers in a mixture

Glycine Iso 1 Iso 2 75 amu 75 amu 75 amu

Interface with hypervelocity ice gun

Side-ionization-capable QITMS with hypervelocity input and gas delivery

Enclosure optimization for interface to hypervelocity ice gun.

Hypervelocity Ice Gun

Generating Hypervelocity Ice Grains in the Lab

IR Laser/Liquid Beam Interactions in the testbed generate neutral and charged particles with mass and velocity distributions analogous to the Enceladus Ice plume/QTIMS interactions.

20

Conclusions

- Soft chemical ionization of amino/fatty acids was achieved in the QIT-MS in water-rich environments like those expected when sampling ice grains at hypervelocity
- A mixture of water:acetone (99:1) is capable of relatively soft ionization of both amino and fatty acids
 - Will continue to search for a lighter reagent with similar proton affinity as acetone
 - Could use a separate reagent for CI of amino acids with reduced fragmentation
 - Effective for mixtures
- The water/acetone mixture has been successfully used as a collision gas for MS/MS

Acknowledgements

- Frank Postberg Hypervelocity Ice Gun Heidelberg
- Bernd Abel Hypervelocity Ice Gun Leipzig
- Other JPL team members:
 - All other authors, especially Sarah Waller and Anton Belousov
 - Jurij Simcic Engineering/Design
 - Rembrandt Schaefer RF Electronics
 - James Lambert Hypervelocity ice (JPL)
 - Nick Tallarida Hypervelocity ice (JPL)
 - Rob Hartsock Hypervelocity ice (JPL)

